JSLint

Improving the quality of JavaScript code

™

® The JavaScript Code Quality Tool
l n t Edition 2010-07-14
(Rcad the instructions.)Set the options. Enjov The Good Parts.

Paste your program into the text box above and click a button.

Warning: JSLint will hurt your feelings.

* Identifies real and potential issues in
JavaScript code, JSON, HTML and CSS

* Enforces coding conventions

* Can enforce many recommendations in the book
“JavaScript: The Good Parts”

* Written in JavaScript by Douglas Crockford

* In a web browser
* browse http://jslint.com/
specify options in checkboxes and text fields at bottom of page (see slide 8)

paste code in textarea at top of page (see slide 2)

* * ¥

press "JSLint” button

* From command-line

* using Rhino, a JavaScript interpreter written in Java
* download jslint.js from http://www.jslint.com/rhino/
* Jjava -jar SRHINO DIR/js.jar jslint.js file-path-to-be-checked
% write a script to run the above command

* using Windows Script Host under Microsoft Windows

* download jslint.js from http://www.jslint.com/wsh/

* cscript jslint.js < file-path-to-be-checked

Example Input

-
function foo () {

a = 1; // undeclared variable

bar(); // call to function that hasn't been defined yet
var b = 2;

var ¢ = 3; // more than one var statement in function

c = b // no terminating semicolon

if (b == c) // == instead of ===

print('equal'); // no braces around statement after if

print('Hello'); // wrong indentation

function bar() {

return true;

Example Output

-

Lint at line 5 character 5: 'a' is not defined.

a = 1; // undeclared variable

Lint at line 6 character 5: 'bar' is not defined.
bar(); // call to function that hasn't been defined yet

Lint at line 8 character 9: Too many var statements.

var ¢ = 3; // more than one var statement in function

Lint at line 9 character 10: Missing semicolon.

c =b // no terminating semicolon

Lint at line 10 character 1l1l: Expected '===' and instead saw '=='.
if (b == c¢) // == instead of ===

Lint at line 11 character 9: Expected '{' and instead saw 'print'.

print('equal'); // no braces around statement after if

Lint at line 11 character 9: Expected 'print' to have an indentation at 5 instead at 9.

print('equal'); // no braces around statement after if

Lint at line 13 character 3: Expected 'print' to have an indentation at 5 instead at 3.

print('Hello'); // wrong indentation

Lint at line 16 character 13: 'bar' was used before it was defined.

function bar () {

_

Cleaned Up Code

4)
function bar() {

return true;

function foo() {

var a, b, c;

a=1;

bar () ;

b= 2; JSLint output for this code is
’ jslint:

c = 3;

c =Db;

if (b === c) {

print('equal') ;

print ('Hello') ;

JSLint Options

Options
() Stop on first error ([Tolerate debugger statements (J Allow one var statement per function
() Strict white space (JTolerate eval (O Disallow undefined variables
™ Assume a browser ([Tolerate sloppy line breaking (O Disallow dangling _ in identifiers

[J Assume console, alert,

() Assume a Yahoo Widget
) Assume Windows

() Assume Rhino

() Safe Subset

() ADsafe

| The Good Parts |

| Clear All Options |

Predefined (, separated) :

[Tolerate unfiltered for in
() Tolerate inefficient subscripting
[Tolerate CSS workarounds
[Tolerate BTML case
() Tolerate BTML. event handlers
([Tolerate aTML fragments
(O Tolerate ESS5 syntax

_: Maximum line length
i Maximum number of errors

(O Disallow == and !=

() Disallow ++ and --

(O Disallow bitwise operators

(O Disallow insecure . and [*~...] in /RegExp/
([Require Initial Caps for constructors

[Require parens around immediate invocations
(JRequire "use strict";

/*jslint browser: true, maxerr: 50, indent: 4 */

changing options updates the comment in the box

at the bottom which can be copied into a source file

Configuration in Source Files

* Specified with comments at top of JavaScript source files
* Descriptions of all options are on the next three slides

* Basic example

/*jslint browser: true, indent: 2 */

/*global $: true, someNamespace: true */
g

* “Good Parts” example

/*jslint white: true, browser: true, onevar: true, undef: true,
nomen: true, egeqgeq: true, plusplus: true, bitwise: true,
regexp: true, newcap: true, immed: true, strict: true */

Options ...

Description | option | Meaning
ADsafe adsafe true if ADsafe rules should be enforced. See http://www.ADsafe.org/.
Disallow bitwise bitwise true if bitwise operators should not be allowed. (more)
operators
Assume a browser browser true if the standard browser globals should be predefined. (more)
Tolerate HTML case cap true if upper case HTML should be allowed.
Tolerate CSS css true if CSS workarounds should be tolerated. (more)
workarounds
Tolerate debugger debug true if debugger statements should be allowed. Set this option to false before going into
statements production.
Assume console, devel true if browser globals that are useful in development should be predefined. (more)
alert, ...
Disallow == and ! = egegeq true if === should be required. (more)
Tolerate ESS syntax es5 true if ESS syntax should be allowed.
Tolerate eval evil true if eval should be allowed. (more)
Tolerate unfiltered for || forin true if unfiltered for in statements should be allowed. (more)
in
Tolerate HTML fragment | true if HTML fragments should be allowed. (more)
fragments

.. Options ...

Require parens immed true if immediate function invocations must be wrapped in parens

around immediate 2 !]
invocations var result = (function (params) { ... }())~
Strict white space indent The number of spaces used for indentation (default is 4)

indentation

Tolerate sloppy line laxbreak | true if statement breaks should not be checked. (more)

breaking

Maximum number of maxerr The maximum number of warnings reported (default is 50)

errors

Maximum line length || maxlen | The maximum number of characters in a line

Disallow dangling _ “ true if names should be checked for initial or trailing underbars [P TIEERIES: R ERTIE (e RSV R L

in identifiers but isn't really private
Require Initial Caps newcap true if Initial Caps must be used with constructor functions. (more)

for constructors

Tolerate HTML event || on true if HTML event handlers should be allowed. (more)

handlers

Allow one var onevar true if only one var statement per function should be allowed. (more)

statement per function

Stop on first error passfail || true if the scan should stop on first error.

.. Options

Disallow ++ and -- plusplus | true if ++ and -- should not be allowed. (more)

Predefined (,separated) || predef An array of strings, the names of predefined global variables. predef is used with the option object,
but not with the /*jslint */ comment. Use the var statement to declare global variables in a script
file.

Disallow insecure . regexp true if . and [~...] should not be allowed in RegExp literals. These forms should not be used when

and ~...].in validating in secure applications.

/RegExp/

Assume Rhino rhino true if the Rhino environment globals should be predefined. (more)

Safe Subset safe true if the safe subset rules are enforced. These rules are used by ADsafe. It enforces the safe subset
rules but not the widget structure rules.

. see

Efgilértcuse strict true if the ES5 "use strict"; pragma is required. Do not use this option carelessly. “ECMAScript 5”

; section

Tolerate inefficient sub true if subscript notation may be used for expressions better expressed in dot notation.

subscripting

Disallow undefined undef true if variables must be declared before used. (more)

variables

Strict white space white true if strict whitespace rules apply.

Assume a Yahoo widget true if the Yahoo Widgets globals should be predefined. (more)

Widget

AssumeWindows | windows | true if the Windows globals should be predefined. (more)

Biggest Benefits ...

* Reduces debugging time by finding issues
before changes to a web app. are deployed

Fixing issues reported by JSLint can improve
browser compatibility of the JavaSeript code since

some browser JavaScript engines
are wmore forgiving than others.

% Finds misuse of functions and variables

* all functions and variables (global or local) must be declared in a var statement
before they are used

* each function (named or anonymous) can only contain one var statement
% encourages declaring all local variables at the top of each function
* global variables defined elsewhere
* must be listed in the /*global: ... */ comment at top of file
* the “browser” option predefines many global variables that are made available by web browsers
* for example, "document” and “alert”
* constructors versus normal functions
* functions that start with an uppercase letter cannot be directly invoked (assumed to be constructors)

% functions that start with a lowercase letter cannot be used with new (assumed to not be constructors)

%k Avoids issues with automatic determination of statement ends

* requires statement fermination with semicolons

% except for, function, if, switch, try and while

* multi-line statements can only be broken after certain characters

* see “line breaking” in documentation

%k Avoids confusion over where statement blocks end

% requires code that appears where a block can appear to be in curly braces

* if-else, for, while, do and try-catch-finally statements

* Avoids issues with automatic type conversions

* requires use of === and !'== instead of == and !=

* Avoids unintentional assignments in conditions
of if, for, while and do statements

% cannot assign fo a variable within a condition

* Avoids issues with fall-through cases in switch statements

* code in all case clauses must end with a break statement

(")
obj.methodl () ;
sk AVOidS _I_rickyu COde obj.method2 (argl, arg2?);
* use of with - setfs context for contained function calls «———with (obj) {
T . methodl () ;
* use of eval - evaluates strings of JavaScript code method? (argl, arg?);
* requires use of += 1 and -= 1 instead of ++ and -- ()

* Requires consistent code indentation

Part of Build Process

* Make use of JSLint part of the build process for your web application

* dont have to remember to run it
* build can fail if JSLint finds any issues, requiring fixes before continuing

* avoid unnecessary checking of files that have already passed and havent changed

* by keeping results in .jslint files that are empty files only retained fo have timestamp for the last check
% Recipe
% for each .js, .html and .css file

% if there is no previous .jslint file for this source file or the source file is newer than the .jslint file

* run JSLint on the file redirecting output to a file with the same name and an extension of .jslint
(file will be empty if no issues are found)

* if the output file doesnt only have one line that contains "No problems found”

% send its contents to stdout

% delete the output file may want to write output files to a different directory and/or

S make them hidden files by starting their names with a period

could implement with a bash script that is invoked from Ant

using the exec task (ask me for the code if interested)

* Like all coding standards,
you may not agree with everything JSLint wants

* However, the benefits it provides in
finding issues before deployment and enforcing code consistency
far outweigh the discomfort you may feel over some of its demands

