
JSLint
Improving the quality of JavaScript code

http://jslint.com

Overview
Identifies real and potential issues in
JavaScript code, JSON, HTML and CSS

Enforces coding conventions

Can enforce many recommendations in the book
“JavaScript: The Good Parts”

Written in JavaScript by Douglas Crockford

Ways To Use
In a web browser

browse http://jslint.com/

specify options in checkboxes and text fields at bottom of page (see slide 8)

paste code in textarea at top of page (see slide 2)

press “JSLint” button

From command-line
using Rhino, a JavaScript interpreter written in Java

download jslint.js from http://www.jslint.com/rhino/

java -jar $RHINO_DIR/js.jar jslint.js file-path-to-be-checked

write a script to run the above command

using Windows Script Host under Microsoft Windows
download jslint.js from http://www.jslint.com/wsh/

cscript jslint.js < file-path-to-be-checked

function foo() {

 a = 1; // undeclared variable

 bar(); // call to function that hasn't been defined yet

 var b = 2;

 var c = 3; // more than one var statement in function

 c = b // no terminating semicolon

 if (b == c) // == instead of ===

 print('equal'); // no braces around statement after if

 print('Hello'); // wrong indentation

}

function bar() {

 return true;

}

Example Input

Example Output
Lint at line 5 character 5: 'a' is not defined.

a = 1; // undeclared variable

Lint at line 6 character 5: 'bar' is not defined.

bar(); // call to function that hasn't been defined yet

Lint at line 8 character 9: Too many var statements.

var c = 3; // more than one var statement in function

Lint at line 9 character 10: Missing semicolon.

c = b // no terminating semicolon

Lint at line 10 character 11: Expected '===' and instead saw '=='.

if (b == c) // == instead of ===

Lint at line 11 character 9: Expected '{' and instead saw 'print'.

print('equal'); // no braces around statement after if

Lint at line 11 character 9: Expected 'print' to have an indentation at 5 instead at 9.

print('equal'); // no braces around statement after if

Lint at line 13 character 3: Expected 'print' to have an indentation at 5 instead at 3.

print('Hello'); // wrong indentation

Lint at line 16 character 13: 'bar' was used before it was defined.

function bar() {

Cleaned Up Code

function bar() {
 return true;
}

function foo() {
 var a, b, c;
 a = 1;
 bar();
 b = 2;
 c = 3;
 c = b;
 if (b === c) {
 print('equal');
 }

 print('Hello');
}

JSLint output for this code is
jslint: No problems found in fixed.js

JSLint Options

changing options updates the comment in the box
at the bottom which can be copied into a source file

Configuration in Source Files
Specified with comments at top of JavaScript source files

Descriptions of all options are on the next three slides

Basic example

“Good Parts” example

/*jslint browser: true, indent: 2 */

/*global $: true, someNamespace: true */

/*jslint white: true, browser: true, onevar: true, undef: true,
nomen: true, eqeqeq: true, plusplus: true, bitwise: true,
regexp: true, newcap: true, immed: true, strict: true */

Options ...

... Options ...

var result = (function (params) { ... }());

sometimes used to indicate private data,
but isn’t really private

... Options

see
“ECMAScript 5”
section

Biggest Benefits ...
Reduces debugging time by finding issues
before changes to a web app. are deployed

Finds misuse of functions and variables
all functions and variables (global or local) must be declared in a var statement
before they are used

each function (named or anonymous) can only contain one var statement

encourages declaring all local variables at the top of each function

global variables defined elsewhere
must be listed in the /*global: ... */ comment at top of file

the “browser” option predefines many global variables that are made available by web browsers

for example, “document” and “alert”

constructors versus normal functions

functions that start with an uppercase letter cannot be directly invoked (assumed to be constructors)

functions that start with a lowercase letter cannot be used with new (assumed to not be constructors)

Fixing issues reported by JSLint can improve
browser compatibility of the JavaScript code since
some browser JavaScript engines
are more forgiving than others.

... Biggest Benefits ...
Avoids issues with automatic determination of statement ends

requires statement termination with semicolons
except for, function, if, switch, try and while

multi-line statements can only be broken after certain characters
see “line breaking” in documentation

Avoids confusion over where statement blocks end
requires code that appears where a block can appear to be in curly braces

if-else, for, while, do and try-catch-finally statements

Avoids issues with automatic type conversions
requires use of === and !== instead of == and !=

... Biggest Benefits
Avoids unintentional assignments in conditions
of if, for, while and do statements

cannot assign to a variable within a condition

Avoids issues with fall-through cases in switch statements
code in all case clauses must end with a break statement

Avoids “tricky” code
use of with - sets context for contained function calls

use of eval - evaluates strings of JavaScript code

requires use of += 1 and -= 1 instead of ++ and --

Requires consistent code indentation

obj.method1();

obj.method2(arg1, arg2);

with (obj) {

 method1();

 method2(arg1, arg2);

}

Part of Build Process
Make use of JSLint part of the build process for your web application

don’t have to remember to run it

build can fail if JSLint finds any issues, requiring fixes before continuing

avoid unnecessary checking of files that have already passed and haven’t changed
by keeping results in .jslint files that are empty files only retained to have timestamp for the last check

Recipe
for each .js, .html and .css file

if there is no previous .jslint file for this source file or the source file is newer than the .jslint file

run JSLint on the file redirecting output to a file with the same name and an extension of .jslint
(file will be empty if no issues are found)

if the output file doesn’t only have one line that contains “No problems found”

send its contents to stdout

delete the output file

exit

may want to write output files to a different directory and/or
make them hidden files by starting their names with a period

could implement with a bash script that is invoked from Ant
using the exec task (ask me for the code if interested)

Give In!
Like all coding standards,
you may not agree with everything JSLint wants

However, the benefits it provides in
finding issues before deployment and enforcing code consistency
far outweigh the discomfort you may feel over some of its demands

