Remote M ethod
| nvocation (RM1)

@ Open Computing I nstitute, Inc. 1 RMI



Distributed Object Benefits

e Processing can be performed
— 0on the most capable processor / operating system
— where datais most easily accessible

« Can perform multi-host multithreading

— Inanetwork or across the internet

— combine functionality of objects residing on many
hosts into a single application

— applications that run on different hosts can
Interoperate

* New applications can work with legacy
applications through OO interfaces

— such as Java classes that use native methods

@ Open Computing I nstitute, Inc. 2 RMI



Distributed Object |ssues

L atency
— remote callstake ~ 4 times aslong aslocal calls

— processor speeds are increasing faster than network
speeds so this difference is unlikely to be reduced

— design must consider which objects should be remote
to get acceptable performance

Memory Access

— pointers are only valid within a single address space

* not aproblem for RMI for these reasons that will be
understandable later

— RMI uses object serialization to pass copies of non-
remote objects and the non-remote objects reachable
from them. If these non-remote objects contain
references to remote objects then stubs are created for
them and they can be accessed remotely.

— RMI passes references (pointers) to remote objects.
Fields of remote objects that are references to non-
remote objects cannot be accessed through a remote
reference because remote interfaces only expose
methods, not fields.

@ Open Computing I nstitute, Inc. 3 RMI



Distributed Object |ssues
(Cont’d)

e Partia Fallure

— New kinds of errorsto handle
e communication problems
— machine crash, network failure
» processfailures
* marshaling/unmarshaling errors

— More difficult to support distributed transactions

» aseriesof actions that must either all complete successfully or
al “rollback” to return the objects involved in atransaction to
their previous state

» want to be able to lock changed objects until committed or
rolled back

e Concurrency

— multiple objects (local or remote) concurrently trying
to modify and access the same remote object
* may want to allow thisin some cases
— synchronization (locking) is needed to insure that
objects being accessed arein a“valid” state

» part of implementing transactions

— not a problem for RMI since locking of remote
objects is supported

@ Open Computing I nstitute, Inc. 4 RMI



RMI vs. CORBA

e RMI
— Java-only distributed object model
% — relatively simpleto use
» especidly if aready familiar with Java
sk — software needed isfree

— new so lacks maturity
* but had knowledge of CORBA
* many RMI designers participated in the design of CORBA

« CORBA

% — language independent distributed object model
* but nearly all CORBA development isdonein C++

— relatively complex to use

— software needed to use is expensive
 but the price of OrbixWeb has been dropped to $799

% — spec. has been maturing for several years
* Object Management Group (OMG)
— started in 1989
— over 600 member companies
* many capabilities have been defined
— naming service, automated launching of servers,
timeouts, transactions, ...
— vendors haven't implemented the complete
set of defined object services

» switching between ORB vendors can require major code
modification

@ Open Computing I nstitute, Inc. S RMI



Non-OO ApproachesTo
Distributed Processing

* Remote Procedure Call (RPC)

— dlowsinvocation of remote functions
— biggest drawback isthat it’s not OO

e Sockets

— dlow datatransfer using of application specific
protocols
» example - cash register system
— 1= purchase
— 2=return
— 3 =exchange
— different data must be sent for each
— thedatatransferred can indicate what should be done
on the server

— @rror prone due to assumptions about what types of
datawill be sent and received (protocol)

@ Open Computing I nstitute, Inc. 6 RMI



RMI goals

« Minimize differences between working

with local and remote objects
— but don’t hide them

— theissues presented earlier need to be considered
when designing distributed applications
* examples
— extraexceptions must be caught for remote method calls
— must consider which objects should be collocated

e Minimize complexity
— make the common things easy }

common

— make the uncommon things doable | *vagod

e Preservetype safety
— compile-time type checking
» even for remote method calls
« Support distributed garbage collection

— objects with no referencesin the VM may still have
remote references

@ Open Computing I nstitute, Inc. 7 RMI



RMI| Operation

(descriptions of all the elementsin thisdiagram are on pages 9-13)

. copied manually
Client / \ Server
remote remote remote
interface interface | | implementation
classs class class
instantiation

local lookup bind/  remote
object returns areference to ‘ object

the stub it copied over

e
call o \)wxecfzz(\\ call
cp()\“\ gg(\le(
A IO
serialized serialized return
arguments value or exception
Remote Reference Layer Remote Reference Layer
(will handle replication) (will handle activation)
Transport Layer Transport Layer

8 must copy to client to compile client class OR discover through reflection
* generated by the rmic compiler
T copied from server to client when a remote object reference is obtained

@ Open Computing I nstitute, Inc. 8 RMI



Terminology

e Virtua Machine (VM)

— asoftware processor with its own instruction set
(Java bytecode)

— environment in which Java methods are executed
— 0ONne per process
— can have more than one running on the same host

o Client Object
— an object that uses the services (methods) of aremote
(server) object

* Remote/Server Object

— an object that provides services (methods) that can be
utilized by objectsin different VMs

— implements one or more remote interfaces
— an object can be both a client and a server object

@ Open Computing I nstitute, Inc. 9 RMI



Terminology (Cont’d)

 Remote Interface

— declares the methods that clients can invoke on a
remote object

* Registry
— URL-based name server used to locate some remote

objects

* most objects are located through method return values after the
client obtains areference to a“main” server object

— must have one for every host/port combination where
remote objects will be located via registry lookup

@ Open Computing I nstitute, Inc. 10 RMI



Terminology (Cont’d)

e Marshaling

— converting remote method arguments to a stream of
bytes in a stub
» only non-remote objects are marshaled
» for remote objects aremote referenceis used

— converting the return value or exception of aremote
method to a stream in a skeleton

— uses Obj ect Senahzanon < all remote objects are Serializable because
they all extend UnicastRemoteObject which

extends RemoteServer which extends

e Unmar Shal | ng RemoteObject which implements Serializable

— reconstructing method arguments from a stream of
bytes in a skeleton

— reconstructing a method return value or exception
from a stream of bytesin astub

— uses Object Serialization <

o Transient Fields
— fields of an object that are

* not considered part of its state
» their values may be computed at run-time

— not marshaled because they aren't serialized

@ Open Computing I nstitute, Inc. 11 RMI



Terminology (Cont’d)

Stub

— client-side proxy for a server-side object
e marshals arguments
» forwards method callsto the remote reference layer
» unmarshalsreturn values and exceptions
— Instances are created when areference to aremote
object is passed to aclient VM
* by calling Naming.lookup("remote object URL")

* by invoking aremote method that returns a remote object
— supports the same remote interfaces as the
corresponding remote object

code generated by the rmic compiler

Skeleton

— server-side object that dispatches calls to remote
object methods
* unmarshals arguments
» calls methods in the corresponding remote object
» marshals return values and exceptions

— code generated by the rmic compiler

@ Open Computing I nstitute, Inc. 12 RMI



Terminology (Cont’d)

* Replicated Objects
— multiple objects in different locations that are to be
kept in sync.
— support for thisis not provided in JDK 1.1

 Remote Reference Layer

— responsible for
 finding remote objects
* invoking remote methods on them
» keeping replicated objectsin sync. (multicast vs. unicast)
— can be implemented to work with server applications

that Java application that creates remote
. objects and adds them to the registry
e areaways running

» only run when amethod in one of their objectsisinvoked
— not available yet

e Transport Layer

— manages communication between VMs

— transfers serialized objects between the remote
reference layers of VMs

— Informs remote reference layer of methods it should
invoke

@ Open Computing I nstitute, Inc. 13 RMI



L ocal vs. Remote ODbjects

Similarities

references to remote objects can be passed to and
returned from methods

Differences

clients can only invoke methods of remote objects
that are declared in aremote interface

when areference to alocal object is passed to a
remote method, the remote VM gets its own copy

* methods are invoked on the local copy and changes aren't
reflected in the original

» static and transient fields are not copied since serialization
doesn't include these

when a reference to aremote object is passed to a
remote method, a stub is created in the remote VM

* methods are invoked on the remote object, not a copy

all remote methods must state that they can throw
RemoteException

clients must catch exceptions specific to RMI
cloning a stub doesn’t create a new remote object

@ Open Computing I nstitute, Inc. 14 RMI



Blocking

Calls to remote methods block
To achieve a non-blocking method call

Implement the client object that will be interested in
the remote method result as a remote object

pass that client object to the remote method

In the remote method

» storethe reference to the client object

» start athread to do the processing

* return from call

» when the processing compl etes invoke some method in the

client object to notify it

example code demonstrates server callback to
client objects

@ Open Computing I nstitute, Inc. 15 RMI



Steps To Utilize RMI

Create remote interfaces

— clientswill use these to invoke remote methods

Create remote implementation classes
— these implement the remote interfaces and

provide the remote functionality

Create server initialization application
— creates remote objects and binds them in the registry

— Isn't needed if all remote implementation classes
have amain() method that creates instances and

binds them in the registry

Create client classes
— these can utilize remote objects
— they locate remote objects by

» performing alookup in aregistry
OR

* invoking a method of another remote object that returns one

Start the registries on the servers
— alowsclientsto lookup remote objects

server hosts need a
static | P address so
clients can find them

Start the server initialization application(s)

Start the clients

@ Open Computing I nstitute, Inc. 16

RMI




java.rmi Package

e nterface Remote
— dl remote interfaces extend this
— doesn’t define any methods (amarker like Serializable)

 class RemoteException

— superclassof al RMI exceptions
* UnknownHostException

— attempt to lookup a remote object in the registry of an
unknown host

* NotBoundException
— attempt to lookup a name that isn’t bound in that
registry
* AlreadyBoundException

— attempt to bind to a name that was already bound to a
remote object in that registry

* StubNotFoundException

— stub bytecode was not found on the server so it
couldn’t be copied to the client (and other reasons)

*  NoSuchObjectException

— attempt to invoke a method on a remote object that is
no longer available (the server application may have
stopped running)

e and many more

— see Javasoft web page for Remote Method Invocation
Specification ... Exceptions In RMI

@ Open Computing I nstitute, Inc. 17 RMI



Jjava.rmi Package (Cont’d)

» classNaming

— provides methods that allow remote objectsto be
registered and located by URL (host, port, object
name)

bind -

rebind -
unbind -

lookup -

list -

associates a URL with aremote object

(all objectsin the same registry have the same
host and port)

the port defaults to 1099

associates a previous used URL with adifferent
remote object

removes the association between a URL and
aremote object

copies a stub from the server which created the
remote object associated with a given URL
(host and port are used to locate the correct registry)

retrieves the URL s of all remote objectsin
agiven registry

@ Open Computing I nstitute, Inc. 18 RMI



java.rmi.server Package

» class RemoteObject
— implements Serializable

— superclass of all stubs and
remote implementation classes

— provides remote versions of the hashCode, equals,
and toString methods in Object

* equalsfor remote objectsis overridden to be the same as
== for local objects
— for local objects
» == tests whether two references refer to the same
object
* equalsisnormally overridden to test whether two
objects have equal field values
— for remote objects
* useequalsinstead of == to test whether two
references refer to the same object
» write your own method to test for equality

— reason isthat remote method invocations would be
required to test whether the fields of two objects are
equal and the signature of equals doesn’t allow for
RemoteException to be thrown (all remote methods
throw this)

* hashCode returns the same value for all client stubs that refer
to the same remote object

— used when remote objects are used as keysin
aHashtable

* toString includes the host name and port number where the
remote object is registered

@ Open Computing I nstitute, Inc. 19 RMI



java.rmi.server Package

class RemoteServer

(Cont’d)

RemoteObject

f

RemoteServer

1

UnicastRemoteODbj ect

extends RemoteObject
superclass of al remote implementation classes
only UnicastRemoteServer isavailablein JDK 1.1

can determine the host and port of aclient that
Invoked aremote method in that method
o getClientHost() and getClientPort()

class UnicastRemoteObject

extends RemoteServer which extends RemoteObject

— for non-replicated remote implementation classes

» only one copy of each remote object

* remote object references become invalid when the virtual
machine in which they are created stops since there is only one
copy of them

@ Open Computing I nstitute, Inc. 20 RMI



Example

* A remote object maintains a total
of integers

o Client objects can
— addto the totd
— reguest the current total
— request to be notified when the total changes

Enter an integer and click the Add button.

] )

The total is 1]

@ Open Computing I nstitute, Inc. 21 RMI



Files Needed

o Server-side
— Adder.java
* remote interface for objects that maintain atotal

— Adderimpl.java
* implements Adder

» asoan application (hasamain()) that creates an object from
this class and bindsit in the registry

e Client-side

— AdderListener.java

* remote interface for objects that wish to be informed when the
total maintained by an Adder changes

— AdderGUl .java

* implements AdderListener
* client-side GUI that interacts with an Adderlmpl

@ Open Computing I nstitute, Inc. 22 RMI



Adder.java

i mport java.rm.*;

/**

* This interface declares the nethods inplenented by the
* renmpte class Adderl npl.

*

* @uthor R Mark Vol kmann

*/

public interface Adder extends Renote {

all remote classes
must do this

/**
* Adds a listener to the set of listeners for this object.
* @aramlistener the Iistener to be added
* @xception java.rm . Renot eException
*/
voi d addLi st ener (Adder Li stener |) throws RenoteException;

[k \ all remote methods

* Get the current sumheld by the Renotelnpl object. must include this
* @xception java.rm . Renot eException throws clause
*/

int getTotal () throws RenpteException;

/**
* Add a given nunber to the sum held by the Renotel npl object.
* @aram x the nunber to add.
* @xception java.rm . Renot eException
*/
void add(int x) throws RenoteException;

@ Open Computing I nstitute, Inc. 23 RMI



AdderImpl.java

i mport java.rm.*;

i mport java.rm.server. Uni cast Renot e(bj ect ;
i mport java.util.Enuneration;

i mport java.util.Vector;

/**

* This renote class maintains a total of nunbers that are passed to it.
* |t can also notify listeners of changes to the total.

*
* @uthor R Mark Vol kmann remoteobj_ectimplementations
y must do this

public class Adderlnpl extends Uni cast RenoteCbj ect inplenments Adder ({

private int total;
private Vector |isteners = new Vector();

@ Open Computing I nstitute, Inc. 24 RMI



AdderImpl.java (Cont’d)

allows stub code to be loaded from aremote server

(needed in addListener) and controls what stubs can do

(cannot manipulate threads, exit VM, exec OS commands,
read/write/delete local files, use sockets, access the system clipboard, etc.)

/**

* Creates a renote object fromthis class and registers it.
*/
public static void main(String args[]) {
System set Securi t yManager (new RM SecurityManager());
try {
Systemout.println("creating Adderlnpl");
Adder I mpl obj = new Adder | npl ();
Systemout.println("binding in registry”);
Nam ng. r ebi nd("// Duke/ Adder Server", obj);
Systemout. println("ready");
} catch (Exception e) {
Systemerr.println(e);

} The application doesn't terminate when the end of main() is reached because the call to

Naming.rebind() starts the distributed garbage collector in athread and that thread is still running.
The registry holds references to remote objects so they won't be garbage collected unless they
are removed from the registry by calling Naming.unbind() or Naming.rebind().

/**

* Constructs a new Adder | nmpl .
* Even though this constructor doesn't do anything, it is required

* so that we can specify that a RenoteException nmay be thrown during
* object creation.

* @xception java.rm .Renot eException

*/
public AdderInpl () throws RenoteException {
}

/**

* Adds a given nunber to the total.
* @aram nunber the nunber to add.
* @xception java.rm .Renot eException
*/
public void add(int nunber) throws RenoteException {
total += nunber;
notifyLi steners();

}

@ Open Computing I nstitute, Inc. 25 RMI



AdderImpl.java (Cont’d)

/**

* Adds a listener to the set of listeners for this object.

* @aramlistener the Iistener to be added

* @xception java.rm .Renot eException

*/
public void addLi st ener (AdderLi stener |istener) throws RenoteException
{

i steners. addEl ement (I i st ener);

/**

* @eturn the current total.
* @xception java.rm .Renot eException
*/
public int getTotal () throws RenoteException {
return total;

@ Open Computing I nstitute, Inc. 26 RMI



AdderImpl.java (Cont’d)

/**
* Notifies all |listeners of the current total
* @xception java.rm .Renot eException
*/

public void notifyListeners() throws RenoteException {
Adder Li stener |istener
Vect or deadLi steners = new Vector();

Enunmeration e = listeners. el enents();
whil e (e. hasMoreEl enents()) {
listener = (AdderlListener) e.nextEl enent();
try {
| istener.total Changed(total);
} catch (Unnmarshal Exception ue) {
/1 A previous listener of this renote object
/1 must have died.
deadLi st eners. addEl enent (| i st ener);

/1 Renove dead listeners fromthe list of |isteners.
e = deadLi steners. el ements();
whil e (e. hasMoreEl enents()) {
listener = (AdderlListener) e.nextEl enent();
Systemout. println("Adderlnpl.notifyListeners: " +
"renmoving a dead |istener");
i steners.renoveEl enent (1istener);

@ Open Computing I nstitute, Inc. 27 RMI



AdderListener.java

i mport java.rm.*;

/**

* An interface inplenmented by classes whose objects wish to be

* notified when the total maintained by an Adder object is changed.
*

* @uthor R Mark Vol kmann

*/

public interface AdderlListener extends Renote {

/**

* Called when the total maintained by an Adder object is changed.

* @aramtotal the new total
* @xception java.rm .Renot eException
*/
voi d total Changed(int total) throws RenoteException;

@ Open Computing I nstitute, Inc. 28

RMI



Adder GUI .java

aw . *;

aw . event. *;

net . Mal f or redURLExcepti on;
rm.*,;

rm . server. Uni cast Renot ebj ect ;

j ava.
j ava.
j ava.
j ava.
j ava.

i mport
i mport
i mport
i mport
i mport

* This renote class provides a QU
* added to a total that is nmaintained by another
* It receives notification of changes to the total
* multiple instances of the QU are running,
* themis correct.
*
* @ut hor
*/
public class Adder GUI extends Uni cast Renot e(hj ect
i npl enents ActionLi stener, AdderlListener {

R ©Mark Vol kmann

private static String PROWT =

"Enter an integer and click the Add button.";

I
/1 Fields

I
private Adder adder;

private Button addButton = new Button("Add");
private Frame frame = new Frame("Adder");
private Label nsglLabel = new Label ( PROVPT);
private Label total Label = new Label ();

private TextField intField = new TextFi el d(3);

for entering nunbers that are to be
renot e object,

Adder | mpl .

so that even when
the total

shown in all of

needed because AdderGUI objects
are accessed as remote objects from
Adderlmpl.notifyListeners()

@ Open Computing I nstitute, Inc. 29

RMI




AdderGUI .java (Cont’d)

private Adder GJI () throws RenoteException {
frane. add(nmsglLabel , Border Layout. NORTH) ;

Panel panel = new Panel ();

panel . add(intFi el d);

panel . add( addBut t on) ;

frane. add( panel, BorderLayout. CENTER);

panel = new Panel ();

panel . add( new Label ("The total is "));
panel . add(t ot al Label );

frane. add( panel, BorderLayout. SOUTH);

frane. pack();
addBut t on. addAct i onLi st ener (t his);
franme. addW ndowLi st ener (new W ndowAdapter () {

public void w ndowC osi ng( W ndowEvent e) {
Systemexit(0);

1)

@ Open Computing I nstitute, Inc. 30 RMI



AdderGUI .java (Cont’d)

try {

/1 Locate the object that inplenents the Adder interface
/1 (an Adderl npl object).
adder = (Adder) Nam ng. | ookup("//Duke/ Adder Server");

/1 Display the current total maintained by the Adder.
tot al Label . set Text (I nteger.toString(adder.getTotal ()));

/1 Listen for changes to the total it maintains.

adder . addLi st ener (this);

frane. setVisible(true);
} catch (Exception e) {
Systemerr.println(e);

}
}
R e
/1 Public Methods
R e
/**
* Starts the application. seep. 25
*/

public static void main(String[] args) {
System set Securi t yManager (new RM SecurityManager());

// Since this class is renpote, the constructor nust be
/1 declared to throw RenoteException.

try {
new Adder QU (); <€ We don't need to add this remote
} catch (RenoteException e) { objec_t to aregistry sincewew_on't_
Systemerr.println(e); be using Naming.lookup() to find it.
}

}

@ Open Computing I nstitute, Inc. 31

RMI




AdderGUI .java (Cont’d)

/**
* Responds to the "Add" Button being clicked by sending
* the nunber in the TextField to the renote Adder object.
*/
public void actionPerformed(ActionEvent e) {
if (e.getSource() == addButton) {
String entered = intField.getText();
try {
adder . add( I nt eger. parselnt (entered));
nmsglLabel . set Text ( PROVPT) ;
} catch (Nunber For mat Exception nfe) {
nmsglLabel . set Text (entered + " is not an integer!");

} catch (Unnmarshal Exception ue) { <&
nmsglLabel . set Text (" Addr 1 npl rmay be dead!");
} catch (RenoteException re) {

a specific kind of
RemoteException

Systemerr.println("Adder Frane. acti onPer f or ned: +re);

/**

* Called when the total maintained by an Adder object is changed.
* @aramtotal the new total
* @xception java.rm .Renot eException
*/
public void total Changed(int total) throws RenoteException {
tot al Label . set Text (I nteger.toString(total));

@ Open Computing I nstitute, Inc. 32 RMI



Stepsto Build and Run

To build

— compile the source
e javac *.java

— generate stubs and skeletons

e rmc Adder GUI
e rmc Adderl npl

Torun

— perform each step in a separate window to make it

easy to monitor and kill each process

— dstart registry (3 ways)
e under any OS

— Javasun.rmi.registry.Registrylmpl { port-number}

e under Solaris

— rmregistry {port-nunber}

e under Windows

* port number must match what
is specified in lookup URLSs
* can omit to use default

— start rmregistry {port-nunber}

— dtart the server
 java Adder| npl

— dtart the clients
 java Adder GUI

— create several sessions

@ Open Computing I nstitute, Inc.

33

RMI




WIN95/NT Additional Steps

e Torun RMI, clients and servers must have
fixed | P addresses

— localhost loopback work for sockets but not RMI!

e Thiscan befaked for PCsthat are not on a
network

— theclients and servers can al run on the same
machine

— Settings...Control

Panel...Network... TCP/IP...Properties...

* DNS Configuration...
— enter anamein the “Host:” text field
— click the“OK” button

* |PAddresstab...
— click the “ Specify an |P address.” radio button
— enter any IP addresssuch as 1.2.3.4

* note that this will make Netscape unusable

— click the“OK” button

» click the“OK” button

* reboot

@ Open Computing I nstitute, Inc. 34 RMI



